essentia オーディオ/音楽解析ライブラリ
Dmitry Bogdanov, et al. 2013. ESSENTIA: an open-source library for sound and music analysis. In Proceedings of the 21st ACM international conference on Multimedia (MM '13). Association for Computing Machinery, New York, NY, USA, 855–858. DOI:https://doi.org/10.1145/2502081.2502229
https://github.com/MTG/essentia
https://github.com/MTG/essentia
Overview - 何がすごい?
- 音楽情報処理を念頭においたオーディオの解析ライブラリ Essentia
- Python, JavaScriptなどで使える
- TensorFlowベースの学習済みモデルも合わせて公開されている
Machine learning models - Essentia 2.1-beta6-dev documentation
Essentia includes algorithms for running inference with two types of data-driven machine learning models that can be used for high-level annotation of music audio: We provide various pre-trained models of both types for various music analysis and classification tasks. Essentia provides wrapper algorithms for TensorFlow deep learning models, designed to offer the flexibility of use, easy extensibility, and real-time inference.
essentia.upf.edu
Technology
- 2021年5月現在公開されている学習済み機械学習モデルは以下
- 自動タグ付け
- 音のEmbedding (OpenL3, VGGish-AudioSet).
- 音源分離 (Spleeter)
- テンポ推定 (TempoCNN)
- 転移学習モデル
- 音楽ジャンル (trained on 4 different datasets)
- ムード: happy, sad, aggressive, relaxed, acoustic, electronic, party
- 調性あり/ 調整なし
- danceability どのくらい踊れるか
- 歌あり / インスト
- 性別 (male, female singer)
Further Thoughts
- インストールが意外とハマる... Ubuntuは `pip` でいけるが Macは自分でソースからコンパイルするのが良さそう.
Installing Essentia - Essentia 2.1-beta6-dev documentation
Essentia depends on (at least) the following libraries: All dependencies are optional, and some functionality will be excluded when a dependency is not found.
essentia.upf.edu
Links
EssentiaのTensorFlowモデルのオンライデモ
Essentia-Tensorflow Demos
essentia.upf.edu